eddịcy

C310
1 pole AC and bi-directional DC
NO contactors for 150 A, 300 A and 500 A

C310-1 pole AC and bi-directional DC NO contactors

Abstract

Compact single-pole NO contactors for AC and DC up to 1,500 volt rated insulation voltage. Making current up to 2,500 amps; conventional thermal current up to 500 amps ; short-time current up to 3,000 amps. The bi-directional DC contactors switch high powers in a small space. With a making capacity of up to $2,500 \mathrm{amps}$, the compact switchgear is suitable for applications with high inrush current or high capacities. All versions can continuously conduct up to 500 amps . In the event of a short circuit, 3,000 amps, can even flow for one second without the contacts welding. The contactor

therefore maintains its full function in order to disconnect high power ranges if necessary up to 500 amps and up to 1,500 volts - irrespective of the current direction. This full bi-directionality is important for systems with a charging and discharging process, such as in battery networks or electric vehicles. Other typical application areas are the DC circuit in inverters, combiner boxes in photovoltaic systems or the management of battery storage systems.

Features

Compact dimensions - high rated insulation voltage U_{i} up to 1,500 volts

Small dimensions - great performance! Nevertheless, all the air gaps in the contact area have been generously dimensioned. The rated insulation voltage is 1,500 volts. The arc chamber of the C 310 is made of plastic. This is efficient and saves weight.

High making capacity I_{cm} of up to $2,500 \mathrm{amps}$
The C310 can switch on a current of up to 2,500 amps (monostable design in a horizontal installation position; $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$). A PWM controller regulates the coil current and ensures lowbounce switch on as well as a low holding power. High contact forces and optimised silver contacts both contribute to the excellent making capacity.

High thermal continuous current $I_{\text {th }}$ of up to 500 amps

All versions of the C310 can continuously carry up to 500 amps . (Cross-section of the connections: $185 \mathrm{~mm}^{2}$, maximum ambient temperature: $85^{\circ} \mathrm{C}$; terminal heating: +65 Kelvin). The value is achieved through very high contact forces.

High short-time withstand current rating I_{cw} of up to $3,000 \mathrm{amps}$
The C310 can carry a current of up to 3,000 amps for one second without the contacts welding. This is enough time for the short circuit fuse to trip. The short-time withstand current rating is based on high contact forces and optimised silver contacts.

Full bi-directionality - reliable disconnection of high performances

All versions of the C310 can reliably disconnect high currents and voltages, irrespective of the current direction. These properties are achieved in the A and K versions through the special arrangement of blowout magnets and arcing chambers, high contact forces and generously dimensioned clearances in the contact aera.

Auxiliary switch with mirror contact function

Series C310 contactors are equipped with auxiliary switches with mirror contact function in accordance with DIN EN IEC 60947-4-1, annex F. Mirror contacts are required for the feedback circuits in safety controls. Mirror contacts ensure that the NC contact of the auxiliary contact is not closed at the same time as the NO main contact.

Standards

Contactors meet requirements for industrial applications to:

IEC 60947-4-1

Low-voltage switchgear and controlgear - Part 4-1: Contactors and motor starters - Electromechanical contactors and motor starters

ISO 16750-3

Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 3: Mechanical loads

UL 60947-4-1
Low-Voltage Switchgear and Controlgear - Part 4-1: Contactors and Motor-Starters - Electromechanical Contactors and MotorStarters.

GB/T 14048.4
Low-Voltage Switchgear and Controlgear - Part 4-1: Contactors and Motor-Starters - Electromechanical Contactors and MotorStarters.

Contactors of the C310 series are designed for continuous currents of $150 \mathrm{amps}, 300 \mathrm{amps}$ and 500 amps . The switchgear has both high making and breaking capacities, and a high short-time withstand current. This ensures high operational safety.
An integrated electronic coil control ensures a constant and reliable switching behaviour independent of the ambient temperature. In addition, the energy consumption and associated heat development of the monostable design is noticeably reduced when switched on.

Inherent to its design, the bistable version consumes no power in either end positions.
Dependent on the application, high requirements can be placed on electromechanical components. The new DC contactors are highly resistant to shock and vibration loads and meet the high requirements of ISO 16750.

Ordering key

Applications

Thanks to many years of experience and competence developing electromechanical switchgear and the mastering DC arcs, Schaltbau has developed an innovative solution with new DC contactors that significantly simplifies applications with DC switching technology. Since the C310 series safely controls both current directions, the contactors are ideal for all applications involving energy recovery.
A typical example here is energy storage, where batteries are

Photovoltaics

- DC switching in central inverters
- Electrical cabinet (combiner boxes)
- Home energy storage systems
repeatedly charged and discharged. Other application areas for the C310 series are regenerative systems, DC charging stations and photovoltaic systems. In battery powered and hybrid vehicles, the devices can be used directly as the main contactor in the battery disconnect unit (BDU). This reliably ensures the disconnection of both poles from the vehicle in the event of a short circuit.

E-mobility

- Electrical vehicles, hybrid vehicles and trolley busses
- DC charging station
- Battery test systems

Battery energy storage systems

- Grid stabilization and battery energy storages
- Regenerative systems in industrial plants
- Battery management systems
- Home energy storages

C310K/- 1 pole NO contactor
AC or bi-directional DC

- Large arc chamber for significantly higher breaking capacity
- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current $\mathrm{l}_{\text {th }}$ up to 500 A
- Rated short-time withstand current I_{cw} up to $3,000 \mathrm{~A}$

Arc chamber main contact system Highly efficient plastic arc chamber with permanent magnetic blowing

Aux. switch S880, SPDT, flat tabs $2.8 \times 0.5 \mathrm{~mm}$

Coil terminal Flat tabs $6.3 \times 0.8 \mathrm{~mm}$

Main contact terminals

Series	Material	\bullet
C310K/150 \ldots	Copper	
C310K/300 ...	Copper	
C310K/500 \ldots	Copper, silver plated	
Series	Thickness	\perp
C310K/150 \ldots	3 mm	
C310K/300 \ldots	5 mm	
C310K/500 \ldots	5 mm	
Series	Diameter	(D)
C310K/150 \ldots	$\varnothing 9 \mathrm{~mm}$	
C310K $300 \ldots$	$\varnothing 11 \mathrm{~mm}$	
C310K/500 \ldots	$\varnothing 11 \mathrm{~mm}$	

Circuit diagram

	Monostable *	Bistable **
C310K/... Main contacts $1 \times \mathrm{NO}$ Number of auxiliary switches none	$\stackrel{{ }_{\mathrm{A} 2-}^{\mathrm{A} 1+}}{\frac{1}{7}-f_{2}^{1}}$	
C310K/... Main contacts 1x NO Number of auxiliary switches*** 1x SPDT S880 W1R6 k		

C310K/...
Main contacts
$1 \times \mathrm{NO}$
Number of auxiliary switches***
2x SPDT S880 W1R6 k

* Coil suppression integrated, additional circuit is not allowed!
** Switching by reversing the polarity, voltage pulse 0.5 sec max.
*** Auxiliary switches with mirror contact function according to EN 60947-4-1, annex F

Dimension diagram C310K/...

Specifications - Version «K» for $\mathrm{U}_{\mathrm{e}}=1,500$ V DC

[^0]

C310A/- 1 pole NO contactor
AC or bi-directional DC

- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$, version with small arc chamber
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current ${ }_{\text {th }}$ up to 500 A
- Rated short-time withstand current I_{cw} up to 3,000 A

Arc chamber cove Reduces the distance to live, metallic or grounded part		
Arc chamber main contact system Highly efficient plastic arc chamber with permanent magnetic blowing		
Aux. switch		
Coil terminal Flat tabs $6.3 \times 0.8 \mathrm{~mm}$		
Main contact terminals		
Series	Material	®
$\begin{aligned} & \text { C310A/150 ... } \\ & \text { C310A/300 ... } \\ & \text { C310A/500 ... } \end{aligned}$	Copper	
	Copper	
	Copper, sil	
Series	Thickness	(1)
$\begin{aligned} & \text { C310A/150 ... } \\ & \text { C310A/300 ... } \\ & \text { C310A/500 ... } \end{aligned}$	3 mm	
	5 mm	
	5 mm	
Series	Diameter	(0)
C310A/150 ...	$\varnothing 9 \mathrm{~mm}$	
C310A/300 ...	$\varnothing 11 \mathrm{~mm}$	
C310A/500 ...	$\varnothing 11 \mathrm{~mm}$	

Circuit diagram

Monostable *
Bistable **

C310A/...
Main contacts
1xNO
Number of auxiliary switches
none

C310A/...
Main contacts
1x NO
Number of auxiliary switches*** 1x SPDT S880 W1R6 k

C310A/...
Main contacts
1x NO
Number of auxiliary switches***
2x SPDT S880 W1R6 k

* Coil suppression integrated, additional circuit is not allowed!
** Switching by reversing the polarity, voltage pulse 0.5 sec max.
*** Auxiliary switches with mirror contact function according to EN 60947-4-1, annex F

Dimension diagram C310A/...

Specifications - Version «A» for $U_{e}=1,000$ V DC

Series	C310A/150	C310A/300	C310A/500
Type of voltage Main contacts, configuration	$\begin{aligned} & \text { DC, bi-directional / AC, } f \leq 60 \mathrm{~Hz} \\ & 1 \times \mathrm{NO} \end{aligned}$		
Electrical data according to IEC/UL 60947-4-1, GB/T 14048.4			
Rated operational voltage $U_{\text {e }}$	1,000 V		
Rated insulation voltage U_{i}	1,000 V @ PD3 / 1,500 V @ PD2		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	10 kV		
Pollution degree / Overvoltage category	PD2, PD3: see U_{e} and $U_{i} /$ OV3		
$\begin{array}{ll}\text { Conventional free air thermal current } \mathrm{t}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} \text { (cross section) } \\ & T_{a}=70^{\circ} \mathrm{C} \text { (cross section) }\end{array}$	$150 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right)$	$300 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right)$	$\begin{aligned} & 500 \mathrm{~A}\left(2 \times 150 \mathrm{~mm}^{2}\right) \\ & 400 \mathrm{~A}\left(240 \mathrm{~mm}^{2}\right) \end{aligned}$
	3.5 W	11 W	30 W
Pole impedance typ.	$150 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Utilization category AC-1* $\mathrm{U}_{\mathrm{e}}=750 \mathrm{~V}$ Rated operational current I_{e} IEC 60947-4-1	60 A	60 A	60 A
Utilization category DC-1* $U_{e}=750 \mathrm{~V}$ Rated operational current I_{e} IEC 60947-4-1, GB/T 14048.4	60 A	60 A	60 A
Utilization category DC-1* / DC general use $U_{e}=600 \mathrm{~V}$ Rated operational current l_{e} UL 60947-4-1	50 A	50 A	50 A
Frequency of operation (operations per hour) I_{e} a ${ }^{\text {a }}$ (1 \& DC-1	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$
Rated short-time withstand current I_{cw} 恠 1 s	3,000 A		
Short circuit protection device for contactors (w/o thermal overload relay) $U_{e}=900 \mathrm{VDC}, I_{\text {prosp }}=10 \mathrm{kA}$, coord. type " 2 ", fuse: SIBA SQB-DC 2 (aR Type)	200 A	315 A	2×250 A (parallel)
Additional electrical ratings of main circuit			
$\begin{array}{lr}\text { Conventional free air thermal current } \mathrm{l}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} \text { (cross section) } \\ \text { Terminal heating }\end{array}$	$\begin{aligned} & 200 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right) \\ & 45 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~A}\left(120 \mathrm{~mm}^{2}\right) \\ & 45 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right) \\ & 65 \mathrm{~K} \end{aligned}$
Power dissipation perpole $\mathrm{I}_{\text {th }}$ @ 40 ${ }^{\circ} \mathrm{C}$, typ.	5 W	15 W	30 W
Pole impedance typ.	$125 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ For mono- or bistable drive (depending on mounting position)	monostable: horizontal: 2,500 A, vertical: 2,000 A bistable: horizontal: 750 A , vertical: 750 A		
Breaking capacity Single contact Double contact circuit $\begin{aligned} & L_{\max }=0.25 \mathrm{mH}, \text { other values on request } \\ & U_{e}=1,500 \mathrm{~V} / I_{e}=50 \mathrm{~A} \\ & U_{e}=900 \mathrm{~V} / I_{e}=400 \mathrm{~A} \\ & U_{e}=750 \mathrm{~V} / I_{e}=500 \mathrm{~A} \\ & U_{e}=500 \mathrm{~V} / I_{e}=800 \mathrm{~A} \\ & U_{e}=1,500 \mathrm{~V} / I_{e}=500 \mathrm{~A} \\ & U_{e}=1,000 \mathrm{~V} / I_{e}=800 \mathrm{~A} \end{aligned}$	60 operations 60 operations		
Electrical endurance	6,000 operations @ DC (L/R = 1 ms$), \mathrm{AC}(\cos \varphi=0.8): 750 \mathrm{~V} / 60 \mathrm{~A}$		
Main contacts			
Contact material	AgSnO_{2}	AgSnO_{2}	AgSnO_{2}
Terminals	M8	M10	M10
Torque	4.8 ... 6 Nm	8 ... 10 Nm	8 ... 10 Nm
Auxiliary contacts			
Number, configuration / Contact material	2x S880 W1R6 k max. / Silver		
Making / Breaking capacity S880	AC-15: $230 \mathrm{VAC} / 1.0 \mathrm{~A}$ DC-13: $60 \mathrm{VDC} / 0.5 \mathrm{~A}$		
Minimum voltage / Current	$5 \mathrm{~V} / 5 \mathrm{~mA}$		
Terminals	Flat quick connect $2.8 \times 0.5 \mathrm{~mm}$		
Magnetic drive (monostable)			
Rated control supply voltage U_{s} (Operating range) Pollution degree / Overvoltage category	$\begin{aligned} & 12 \ldots 24 \mathrm{VDC}(9.5 \ldots 36 \mathrm{~V} D C) / 48 \mathrm{VDC}(33.6 \ldots 60 \mathrm{VDC}) \\ & \text { PD3 / OV2 } \end{aligned}$		
Coil power dissipation, max. ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Pull-In power (0.2 s) / Holding power	$50 \mathrm{~W}(24 \mathrm{~V}) / 2.6 \mathrm{~W}$		
Frequency of operation (operations per hour, no load) $\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	3,600 h-1/ 1,800 h-1		
Pull-in time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Coil suppression (integrated) / Coil terminal	$\begin{aligned} & 33 \mathrm{~ms} / 25 \mathrm{~ms} \\ & \text { Suppressor diode / Flat tabs } 6.3 \times 0.8 \mathrm{~mm} \end{aligned}$		
Magnetic drive (bistable)			
Rated control supply voltage U_{s} (Min. operating voltage) Pollution degree / Overvoltage category	\qquad PD3 / OV2		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$)	35 W		
Frequency of operation (operations per hour, no load) $T_{a}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	1,800 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-offtime $\left(\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right)$ typ. Coil suppression (integrated) / Coil terminal	$20 \mathrm{~ms} / 13 \mathrm{~ms}$ Suppressor diode / Flat tabs $6.3 \times 0.8 \mathrm{~mm}$		
Mounting position	vertical / horizontal (mounting see page 11)		
Degree of protection IEC 60529	IP00		
Mechanical endurance main contacts monostable / bistable $\begin{array}{r}\text { auxiliary contacts }\end{array}$	2,000,000 operations / 100,000 operations 1,000,000 operations		
Shock / Vibration IEC 61373 / ISO 16750-3	Category 1, Class B / Class C		
Temperatures Operating temperature / Storage temperature Altitude / Humidity (EN 50125-1)	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$		
Weight	0.83 kg	0.90 kg	0.95 kg

* Corresponds to 50 switching operations $1.5 \times \mathrm{I}_{\mathrm{e}}$ and 6,000 switching operations $1.0 \times \mathrm{I}_{\mathrm{e}}$

C310S/- 1 pole NO contactor

AC or bi-directional DC

- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$, version without arc chamber
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current $\mathrm{I}_{\text {th }}$ up to 500 A
- Rated short-time withstand current I_{cw} up to $3,000 \mathrm{~A}$

Switching chambe Main contact system w/o arc chamber		
Aux. switch		
Coil termina Flat tabs $6.3 \times 0.8 \mathrm{~mm}$		
Main contact terminals		
Series	Material	,
$\begin{aligned} & \text { C310S/150 ... } \\ & \text { C310S/300 ... } \\ & \text { C310S/500 ... } \end{aligned}$	Copper	
	Copper	
	Copper, sil	
Series	Thickness	1
$\begin{aligned} & C 310 S / 150 \ldots \\ & \text { C310S/300 ... } \\ & \text { C310S/500 ... } \end{aligned}$	3 mm	
	5 mm	
	5 mm	
Series	Diameter	(C)
$\begin{aligned} & C 310 S / 150 \ldots \\ & \text { C310S/300 ... } \\ & \text { C310S/500 ... } \end{aligned}$	$\varnothing 9 \mathrm{~mm}$	
	$\varnothing 11 \mathrm{~mm}$	
	$\varnothing 11 \mathrm{~mm}$	

Specifications - Version «S» for $\mathrm{U}_{\mathrm{e}}=60 \mathrm{~V}$ DC

Series	C310S/150	C310S/300	C310S/500
Type of voltage Main contacts, configuration	$\begin{aligned} & \text { DC, bi-directional / AC, } \mathrm{f} \leq 60 \mathrm{~Hz} \\ & 1 \times \mathrm{NO} \end{aligned}$		
Electrical data according to IEC/UL 60947-4-1, GB/T 14048.4			
Rated operational voltage U_{e}	60 V @ PD3		
Rated insulation voltage U_{i}	1,000 V @ PD3 / 1,500 V @ PD2		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	10 kV		
Pollution degree / Overvoltage category	PD2, PD3: see U_{e} and $U_{i} /$ OV3		
$\begin{array}{ll}\text { Conventional free air thermal current } \mathrm{I}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} \text { (cross section) } \\ & \mathrm{Ta}_{\mathrm{a}}=70^{\circ} \mathrm{C} \text { (cross section) }\end{array}$	$150 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right)$	$300 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right)$	$\begin{aligned} & 500 \mathrm{~A}\left(2 \times 150 \mathrm{~mm}^{2}\right) \\ & 400 \mathrm{~A}\left(240 \mathrm{~mm}^{2}\right) \end{aligned}$
Power dissipation perpole $1_{\text {th }} @ 40^{\circ} \mathrm{C}$ typ.	3.5 W	11 W	30 W
Pole impedance typ.	$150 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Utilization category AC-1* / AC general use $U_{e}=48 \mathrm{~V}$ Rated operational current I_{e} IEC 60947-4-1	150 A	300 A	500 A
Utilization category DC-1* / DC general use $\mathrm{U}_{\mathrm{e}}=48 \mathrm{~V}$ Rated operational current le IEC 60947-4-1, GB/T 14048.4	150 A	300 A	500 A
Frequency of operation $l_{e} \quad$ AC-1 \& DC-1	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$
Rated short-time withstand current $\mathrm{l}_{\mathrm{cw}} \quad \mathrm{t}=1 \mathrm{~s}$	3,000 A		
Short circuit protection device for contactors	on request	on request	on request
Additional electrical ratings of main circuit			
$\begin{array}{lr}\text { Conventional free air thermal current } \mathrm{I}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} \text { (cross section) } \\ \text { Terminal heating }\end{array}$	$\begin{aligned} & 200 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right) \\ & 45 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~A}\left(120 \mathrm{~mm}^{2}\right) \\ & 45 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right) \\ & 65 \mathrm{~K} \end{aligned}$
Power dissipation perpole $\mathrm{I}_{\text {th }}$ @ $40^{\circ} \mathrm{C}$, typ.	5 W	15 W	30 W
Pole impedance typ.	$125 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ For mono- or bistable drive (depending on mounting position)	monostable: horizontal: $2,500 \mathrm{~A}$, vertical: $2,000 \mathrm{~A}$ bistable: horizontal: 750 A , vertical: 750 A		
Breaking capacity ($/ / R=0.1 \mathrm{~ms}$) $\quad \begin{aligned} & \text { U } \\ & \\ & U_{e}=60 \mathrm{~V} / I_{e}=2,000 \mathrm{~A} \\ & U_{e}=96 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=1,300 \mathrm{~A}\end{aligned}$	60 operations 60 operations		
Electrical endurance	$\begin{aligned} & 10,000 \text { operations } \\ & \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ & \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 150 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10,000 \text { operations } \\ & \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ & \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 300 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10,000 \text { operations } \\ & \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ & \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 500 \mathrm{~A} \end{aligned}$
Main contacts			
Contact material	AgSnO_{2}	AgSnO_{2}	AgSnO_{2}
Terminals	M8	M10	M10
Torque	4.8 ... 6 Nm	$8 . . .10 \mathrm{Nm}$	$8 . . .10 \mathrm{Nm}$
Auxiliary contacts			
Number, configuration / Contact material	2x S880 W1R6 k max. / Silver		
Making / Breaking capacity 5880	AC-15: $230 \mathrm{VAC} / 1.0 \mathrm{~A}$ DC-13: $60 \mathrm{VDC} / 0.5 \mathrm{~A}$		
Minimum voltage / Current	$5 \mathrm{~V} / 5 \mathrm{~mA}$		
Terminals	Flat quick connect $2.8 \times 0.5 \mathrm{~mm}$		
Magnetic drive (monostable)			
Rated control supply voltage U_{s} (Operating range) Pollution degree / Overvoltage category	$\begin{aligned} & 12 \ldots 24 \mathrm{VDC}(9.5 \ldots 36 \mathrm{~V} C) / 48 \mathrm{VDC}(33.6 \ldots 60 \mathrm{VDC}) \\ & \text { PD3 / OV2 } \end{aligned}$		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{Us}$) Pull-In power (0.2 s) / Holding power	$50 \mathrm{~W}(24 \mathrm{~V}) / 2.6 \mathrm{~W}$		
Frequency of operation (operations per hour, no load) $T_{a}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	3,600 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Coil suppression (integrated) / Coil terminal	$33 \mathrm{~ms} / 25 \mathrm{~ms}$ Suppressor diode / Flat tabs $6.3 \times 0.8 \mathrm{~mm}$		
Magnetic drive (bistable)			
Rated control supply voltage U_{s} (Min. operating voltage) Pollution degree / Overvoltage category	$24 \mathrm{VDC}(16.8 \mathrm{VDC}) @$ ON time 0.1 ... 0.5 s max. $/ 48 \mathrm{~V} C(33.6 \mathrm{VDC}) @ \mathrm{ON}$ time 0.1 ... 0.5 s max. PD3 / OV2		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$)	35 W		
Frequency of operation (operations per hour, no load) $T_{a}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	1,800 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time $\left(T_{a}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right) /$ Drop-offtime $\left(\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right) \quad$ typ. Coil suppression (integrated) / Coil terminal	$20 \mathrm{~ms} / 13 \mathrm{~ms}$ Suppressor diode / Flat tabs $6.3 \times 0.8 \mathrm{~mm}$		
Mounting position	vertical / horizontal (mounting see page 11)		
Degree of protection IEC 60529	IP00		
Mechanical endurance main contacts monostable / bistableauxiliary contacts	2,000,000 operations / 100,000 operations 1,000,000 operations		
Shock / Vibration IEC 61373 / ISO 16750-3	Category 1, Class B / Class C		
Temperatures \quad Operating temperature / Storage temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \\ & <4,500 \mathrm{m@} \mathrm{U}_{\mathrm{i}}=1,000 \mathrm{~V} /<3,500 \mathrm{~m} @ \mathrm{U}_{\mathrm{i}}=1,500 \mathrm{~V} \text { above sea level } /<75 \% \text { on an annual ave- } \\ & \text { rage } \end{aligned}$		
Weight	0.55 kg	0.63 kg	0.65 kg

* Corresponds to 50 switching operations $1.5 \times \mathrm{I}_{\mathrm{e}}$ and 6,000 switching operations $1.0 \times \mathrm{I}_{\mathrm{e}}$

C310K/...
with large arc chamber

For the C310K/150, C310K/300 and $\mathrm{C} 310 \mathrm{~K} / 500$ series there is a minimum distance of 20 mm to magnetically active, live or earthed parts.

C310A/...
with arc chamber cover

The extinguishing chamber cover is part of the standard scope of delivery for the C310A/150, C310A/300 and C310A/500 series.

Insertable deflection shields

(i) C310A/... series only:
The use of insertable deflection shields reduces the minimum distance to 0 mm . Without deflection shields, the minimum distance of the contactors, depending on the arrangement, can increase to 100 mm .

C310A/...
w/o arc chamber cover

It is permissible to use the C310A/150, C310A/300 and C310A/500 series without arc chamber cover, taking into account additional clearance dimensions.

C310S/...
w/o arc chamber

For the C310S/150, C310S/300 and $\mathrm{C} 310 \mathrm{~S} / 500$ series there is a minimum distance of 15 mm to magnetically active, live or earthed parts.

Mounting holes

C310K/...

Base plate, view from below

C310A/..., C310S/...

Base plate, view from below

Electrical endurance

Minimum distances (3) to live or earthed parts

Predicted electrical endurance as a function of the breaking current

Mounting instructions

C310K/..

Horizontal assembly
«Table mounting» \qquad \longrightarrow
Vertical assembly
«Wall mounting»

The contactors are mounted on a mounting plate with two M5 screws.
(i) The contactors can be mounted horizontally or vertically on a prepared mounting plate.

Mounting positions hanging upside down are not allowed!

Maintenance and safety instructions

Maintenance:

- C310 series contactors are basically maintenance free.
- Make regular in-depth visual inspections once or twice a year.

Safety instructions:

- The device must be used according to the intended purpose as specified in the technical documentation. You are obliged to observe all specifications depending on operating temperature, degree of pollution etc. that are relevant to your application.
- Without further safety measures the contactors are not suited for use in potentially explosive atmospheres.
- In case of malfunction of the device or uncertainties stop using it any longer and contact the manufacturer instantly.
- Tampering with the device can seriously affect the safety of people and equipment. This is not permitted and leads to an exclusion of liability and warranty.
- Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactors switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.
- Contactors running permanently may heat up. So make sure that the contactor has sufficiently cooled down before you start any inspection or maintenance work.

For detailed maintenance, safety and mounting instructions please refer to our operating manuals > C310-M.en!

- When installing contactors with magnetic blowout make sure to do it in such a way that no magnetizable parts can be attracted by the permanent magnets that are also capable of destroying all data of swipe cards.
- In general, strong electromagnetic fields can be generated in the area around the contactors. These can influence other components in the area of the contactors.
- Improper handling of the contactor, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.

We enable electrification for a sustainable future

Schaltbau is a global technology leader specializing in contactors, connectors, switches, and electrical devices.

As pioneers of electrification, Schaltbau has been championing safety on rail for generations. Building on nearly a century of rail experience, with our sub-brand Eddicy we also create future-oriented products and solutions with the highest standards of safety and reliability to switch, connect, control and protect DC applications in energy and e-mobility.

Headquartered in Germany, Schaltbau has a worldwide presence with 12 production and sales sites on all major continents.

Find out more on www.schaltbau.com.

[^0]: * Corresponds to 50 switching operations $1.5 \times \mathrm{I}_{\mathrm{e}}$ and 6,000 switching operations $1.0 \times \mathrm{l}$

